Robotikforschende der ETH Zürich haben einen Tastsensor entwickelt, der Roboterarmen durch taktile Rückmeldung sicher ermöglicht, empfindliche oder zerbrechliche Gegenstände zu ergreifen – ein Schritt ist hin zu dem, was die Ingenieure als Roboterhaut bezeichnen.
(Quelle: ETH Zürich)
Mithilfe von maschinellem Lernen entwickelten ETH-Forschende einen neuartigen, günstigen Tastsensor. Der Sensor misst einwirkende Kräfte hochauflösend und präzise. Er ermöglicht Roboterarmen, empfindliche oder zerbrechliche Gegenstände zu greifen. Von Fabio Bergamin
Wir Menschen haben keine Probleme, zerbrechliche oder glitschige Gegenstände mit den Händen zu greifen. Über den Tastsinn spüren wir, ob wir ein Objekt fest im Griff haben oder ob es uns bald zu entgleiten droht. Entsprechend können wir unsere Kraft dosieren. Auch die Greifarme von Robotern benötigen eine solche Rückmeldung, wenn sie fragile oder rutschige Gegenstände oder solche mit einer komplexen Oberfläche greifen sollen.
Robotikforschende der ETH Zürich haben nun einen Tastsensor entwickelt, der genau bei solchen Anwendungen zum Zug kommen kann – und somit ein Schritt ist hin zu dem, was die Ingenieure «Roboterhaut» nennen. Der Sensor ist sehr einfach konstruiert und damit günstig in der Herstellung, wie die Ingenieure betonen. Im Wesentlichen besteht er aus einer elastischen Silikonhaut, auf deren Unterseite farbige Mikrokügelchen aus Kunststoff angebracht sind, sowie einer herkömmlichen Kamera.
(Mikrokügelchen auf der Unterseite der Silikonhaut. Eine Kamera registriert deren Verschiebung, nachdem Kraft auf sie einwirkt. (Bild: ETH Zürich))
Tastsensor beruht auf rein optischer Messung
Der Sensor funktioniert optisch: Berührt der Sensor einen Gegenstand, wird die Silikonhaut verformt. Dabei verändert sich auch das Muster der Mikrokügelchen, was die Fischaugenkamera auf der Unterseite des Sensors registriert. Aus dem Muster lässt sich dann errechnen, welche Kräfte auf den Sensor einwirken.
«Herkömmliche Kraftsensoren registrieren die einwirkende Kraft nur an einem einzigen Punkt. Wir können mit unserer Roboterhaut hingegen mehrere auf die Sensorfläche einwirkende Kräfte unterscheiden und diese hochauflösend und präzise bestimmen», sagt Carlo Sferrazza. Er ist Doktorand in der Gruppe von Raffaello D’Andrea, Professor für Regelungstechnik an der ETH Zürich. «Ausserdem können wir die Richtung bestimmen, aus der eine Kraft wirkt», sagt Sferrazza. Das heißt, die Forscher können nicht nur die senkrecht auf den Sensor wirkenden Druckkräfte bestimmen, sondern auch quer wirkende Scherkräfte.
(Automatisierte Messungen. (Bild: Sferrazza C et al. IEEE Access 2019))
Datengetriebene Entwicklung
Um errechnen zu können, welche Verschiebungen der Mikrokügelchen von welchen Kräften herrühren, nutzten die Ingenieure einen umfangreichen Satz an Versuchsdaten: Sie testeten maschinengesteuert und somit standardisiert eine Vielzahl verschiedener Sensor-Berührungen, wobei sie den Ort der Berührung, die Krafteinwirkung und die Größe des berührenden Objekts genau kontrollierten und systematisch variierten. Mithilfe maschinellen Lernens gelang es ihnen, diese mehreren Tausend erfassten Berührungen präzise mit den Veränderungen des Kügelchen-Musters in Verbindung zu bringen.
Der dünnste Sensor-Prototyp, den die Forscher bisher gebaut haben, ist 1,7 Zentimeter dick und hat eine Messfläche von 5 mal 5 Zentimetern. Die Ingenieure sind allerdings daran, mit derselben Technik grössere Sensorflächen zu entwickeln, die mehrere Kameras nutzen, und die auch Objekte mit komplexen Formen erkennen können. Ausserdem wollen die Forschenden den Sensor dünner machen – eine Dicke von 0,5 Zentimeter wäre laut ihnen mit derzeit existierender Technologie denkbar.
Tastsensor für Robotik, Sport und Virtual Reality
Weil das elastische Silikon rutschfest ist und der Sensor Scherkräfte messen kann, eignet er sich gut, um damit Robotergreifarme auszurüsten. «Der Sensor würde erkennen, wenn dem Greifarm ein Objekt zu entgleiten droht, womit der Roboter seine Kraft anpassen könnte», erklärt Sferrazza.
Mit einem solchen Sensor könnten Forschende ausserdem die Härte von Materialien testen oder Berührungen digital erfassen. Als Wearables konzipiert könnten Radsportler ihre Kraftübertragung auf das Fahrrad respektive die Pedale messen, genauso wie Läuferinnen die Kraftübertragung auf ihre Schuhe beim Joggen. Schliesslich könnten solche Sensoren wichtige Informationen bei der Entwicklung von Berührungsfeedback zum Beispiel für Virtual-Reality-Spiele geben.
Literatur:
Sferrazza C, Wahlsten A, Trueeb C, D’Andrea R: Ground Truth Force Distribution for Learning-Based Tactile Sensing: A Finite Element Approach. IEEE Access 2019, doi: 10.1109/ACCESS.2019.2956882
Sferrazza C, D’Andrea R: Design, Motivation and Evaluation of a Full-Resolution Optical Tactile Sensor. Sensors 2019, 19: 928, doi: 10.3390/s19040928
Stand: 16.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die WIN-Verlag GmbH & Co. KG, Chiemgaustraße 148, 81549 München einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://kontakt.vogel.de/de/win abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Bild oben: Der Prototyp des Tastsensors. (Bild: ETH Zürich)