Simulation: Schneller zur perfekten Illusion

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Simulation: Schneller zur perfekten Illusion

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
Der Weg zur perfekten Illusion ist derzeit komplex und zeitaufwendig. Nils Thürey, Professor an der Technischen Universität München (TUM), hat gemeinsam mit seinen Kollegen eine Methode vorgestellt, die diese Berechnungen beschleunigen könnte.
tum_simulation_rauch

Simulationen von beeindruckenden Landschaften oder fremdartiger Wesen kennen wir vor allem aus Fantasy- oder Science-Fiction-Filmen. Aber auch in der Medizin und im Ingenieurwesen werden Simulationen immer häufiger eingesetzt. Der Weg zur perfekten Illusion ist allerdings komplex und zeitaufwendig. Nils Thürey, Professor an der Technischen Universität München (TUM), hat gemeinsam mit seinen Kollegen eine Methode vorgestellt, die diese Berechnungen beschleunigen könnte.

Der Angriff ist ein Höhepunkt im Blockbuster „Avatar“: Raketen treffen den Heimatbaum der Nav‘i, der Bewohner von Pandora. Explosionen, Flammen und dicker Rauch sind zu sehen. Damit diese Bilder die Zuschauer auch wirklich in den Bann ziehen, müssen sie realistisch wirken. Aber gerade Simulationen physikalischer Vorgänge sind schwierig umzusetzen. Zu diesen zählt die Darstellung von Flüssigkeiten und Gasen, die unter dem Begriff Fluide zusammengefasst werden.

Besonders die komplexen, verwirbelten Bewegungen bereiten den Programmierern Schwierigkeiten, erklärt Prof. Nils Thürey von der Fakultät für Informatik der TU München. „Für drei Sekunden einer solchen Szene werden hunderte Simulationen durchgeführt, von denen jede einzelne oft mehr als zehn Stunden Rechenzeit braucht.“

Von der Natur abgeguckt

Zeit, die großen Filmproduktionen zur Verfügung steht. Doch bei anderen Anwendungen ist das nicht der Fall. In Computerspielen etwa müssen Simulationen an die Aktionen der Spieler angepasst werden. Dabei werden die Grenzen für eine realitätsnahe, schnelle und flexible Simulation von Fluiden schnell erreicht. Auch in der Medizin und den Ingenieurwissenschaften ist die Schnelligkeit zum Beispiel bei Simulationen von Blut oder Luftwirbeln von großer Bedeutung.

Um den Rechenprozess zu beschleunigen, gehen die Wissenschaftler sozusagen zurück zum Ursprung: Sie analysieren das Verhalten von echten Flüssigkeiten und Gasen. Um aus diesen Beobachtungen Daten zu erhalten, die für die Berechnungen von Simulationen brauchbar sind, waren bisher aufwendige Techniken nötig. Thürey hat in Zusammenarbeit mit internationalen Wissenschaftlern gezeigt, dass es möglich ist, die Daten aus einfachen Videoaufnahmen zu errechnen. Ihre Methode stellten die Forscher im Journal „ACM Transactions on Graphics“ (TOG) vor.

Autovervollständigung der Bewegungen

Bei Phänomenen wie Rauchwolken sind die komplizierten Verwirbelungen auf Videobildern kaum oder gar nicht zu erkennen. Um diese Lücken zu füllen, setzten die Wissenschaftler wiederum Simulationen ein. Anhand von Erfahrungswerten und physikalischen Gesetzmäßigkeiten führt das Programm eine Art Autovervollständigung durch. „Diese Fähigkeit besitzt auch unser Gehirn“, erklärt Thürey. „So ergeben einzelne Punkte auf dem Papier plötzlich ein Bild, auch wenn diese in der Realität nicht verbunden sind.“ Nach diesem Prinzip berechnet die Simulation, wie die Bewegungen wahrscheinlich abgelaufen sind, auch wenn die Daten dies nicht eindeutig zeigen.

Medizinische Diagnosen und spektakuläre Effekte

Die Methode soll nun für verschiedene Anwendungen optimiert werden. So könnten Simulationen des Blutflusses in Verbindung mit der Computertomografie dabei helfen, die Gefährlichkeit eines Aneurysmas zu beurteilen. Auch für die Konstruktion von Tragflächen und anderen aerodynamischen Körpern sind Simulationen von Fluiden nötig. Und natürlich könnten die neuen Programme auch Computerspiele verbessern – und für spektakuläre Explosionen auf dem Bildschirm sorgen.

Publikation: James Gregson, Ivo Ihrke, Nils Thuerey, Wolfgang Heidreich: From Capture to Simulation – Connecting Forward and Inverse Problems in Fluids, ACM Transactions on Graphics (TOG) DOI: 10.1145/2601097.2601147

 

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Andere Leser haben sich auch für die folgenden Artikel interessiert

Eine kompakte Sicherheitsbremse auf kleinem Bauraum mit hohen Kräften und das ohne Hydraulik – mayr Antriebstechnik hat eine pneumatisch gelüftete Version der ROBA-guidestop-Profilschienenbremse entwickelt. Dieses Bremskonzept verspricht die ständig wachsenden Sicherheitsanforderungen zu erfüllen und soll auch ohne den Einsatz von Hydraulik eine hohe Leistungsdichte erreichen.

Redaktionsbrief

Tragen Sie sich zu unserem Redaktions-Newsletter ein, um auf dem Laufenden zu bleiben.

Wir wollen immer besser werden!

Deshalb fragen wir SIE, was Sie wollen!

Nehmen Sie an unserer Umfrage teil, und helfen Sie uns noch besser zu werden!

zur Umfrage

Aktuelle Ausgabe

Topthema: Wettbewerbsfähiger und nachhaltiger durch Digitalisierung

Edge-Applikationen in der Antriebstechnik

Mehr erfahren

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

* Jederzeit kündbar

Entdecken Sie weitere Magazine

Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.