Maschinelles Lernen macht Autodesigns aerodynamischer

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Eine neue interaktive Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Die Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt.

ist_austria_aerodynamischesdes

Eine neue interaktive Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Die Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt.

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den Computer normalerweise ein komplexes System von Gleichungen lösen, um den Luftstrom um das Objekt zu modellieren – ein Verfahren, das Stunden oder gar einen Tag in Anspruch nimmt. Nobuyuki Umetani von Autodesk Research (jetzt an der Universität Tokio) und Bernd Bickel vom Institute of Science and Technology Austria (IST Austria) haben diesen Prozess deutlich beschleunigt, sodass Stromlinien und Druckfeld nun in Echtzeit verfügbar sind. Ihre Methode, die erstmals maschinelles Lernen zur Modellierung der Strömung um kontinuierlich editierbare 3D-Objekte nutzt, wird auf der renommierten SIGGRAPH-Konferenz in Vancouver vorgestellt, an der IST Austria-Forscher heuer mit insgesamt fünf Präsentationen beteiligt sind.

Maschinelles Lernen kann extrem zeitaufwendige Berechnungen deutlich beschleunigen. Bisher dauerte die Berechnung der aerodynamischen Eigenschaften von Autos einen kompletten Tag. “Durch maschinelles Lernen können wir das Strömungsfeld in Sekundenbruchteilen vorhersagen”, erklärt Nobuyuki Umetani. Die Idee, maschinelles Lernen zu nutzen, entstand in einer Diskussion zwischen den beiden Wissenschaftlern, die seit Jahren zusammenarbeiten. “Wir beide teilen die Vision, Simulationen schneller zu machen”, erklärt IST Austria-Professor Bernd Bickel. “Wir wollen, dass Menschen interaktiv Objekte entwerfen können, daher arbeiten wir zusammen, um datengetriebene Methoden zu entwickeln.”

Wegen der strengen Anforderungen des maschinellen Lernens war es bisher extrem schwierig, die Methode auf die Modellierung von Strömungsfeldern anzuwenden. Für maschinelles Lernen müssen sowohl die Eingabe- als auch die Ausgabedaten strukturiert sein. Dies funktioniert gut für zweidimensionale Bilder, die durch eine regelmäßige Anordnung von Pixeln leicht dargestellt werden können. Wird jedoch ein 3D-Objekt durch kleine Einheiten dargestellt wird, wie zum Beispiel durch ein Netz aus Dreiecken, kann sich die Anordnung dieser Einheiten ändern, wenn sich eine Form ändert. Zwei sehr ähnliche Objekte könnten daher für einen Computer sehr unterschiedlich aussehen, wenn sie durch ein anderes Netz repräsentiert werden. Die Maschine wäre dann nicht in der Lage, gewonnene Information über die eine Form auf die andere zu übertragen.

Die Lösung kam durch Nobuyuki Umetanis Idee, sogenannte Polycubes zu verwenden, um die Formen für maschinelles Lernen handhabbar zu machen. Dieser Ansatz – ursprünglich entwickelt um Objekte in Computeranimationen mit Texturen zu versehen – verwendet strenge Regeln bei der Darstellung von Objekten. Ein Modell wird erst durch eine kleine Anzahl großer Würfel dargestellt. Diese werden dann verfeinert und nach einem genau definierten Verfahren in kleinere unterteilt. Auf diese Weise dargestellt, haben Objekte mit ähnlichen Formen auch ähnliche Datenstrukturen, die von maschinellen Lernmethoden ausgewertet und verglichen werden kann.

Die Forscher konnten in ihrer Studie auch zeigen, dass ihre Methode eine beeindruckende Genauigkeit erreicht, was beim Design neuer Autos eine wichtige Voraussetzung ist. Nobuyuki Umetani erklärt: “Wenn Simulationen auf klassische Weise durchgeführt werden, werden die Ergebnisse für jede getestete Form nach der Berechnung schließlich verworfen. Dies bedeutet, dass jede neue Berechnung von Grund auf neu gestartet wird. Beim maschinellen Lernen nutzen wir die Daten früherer Berechnungen. So steigt die Genauigkeit, wenn wir die Berechnung wiederholen.”

Bild: Die neue Software zeigt innerhalb von Sekundenbruchteilen die Stromlinien und den Druck an den Oberflächen von interaktiv deformierbaren Objekten. Credit: Nobuyuki Umetani

Videopräsentation mit Beipielen: https://www.youtube.com/watch?v=U38cKk-sxyY

Projektseite: http://visualcomputing.ist.ac.at/publications/2018/LearningFlow/

Originalpublikation: Nobuyuki Umetani and Bernd Bickel: “Learning Three-Dimensional Flow for Interactive Aerodynamic Design”. 2018, ACM Trans. Graph. 37, 4, Article 89, DOI: 10.1145/3197517.3201325

http://pub.ist.ac.at/~bbickel/downloads/2018_sigg_Learning3DAerodynamics.pdf

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

avatar
  Abonnieren  
Benachrichtige mich bei

Andere Leser haben sich auch für die folgenden Artikel interessiert

MSC Software hat das Hamburger Softwareunternehmen Simufact Engineering übernommen. Simufact ist ein Unternehmen in der Simulation von metallumformenden Prozessen und Fügeprozessen. Seine Produkte Simufact.forming für die Umformsimulation und Simufact.welding für die Schweißstruktursimulation basieren auf Softwaretechnologie für die nichtlineare Simulation.

Komplexe Maschinen, hohe Geschwindigkeiten und hohe Leistung: eine vermeintlich gefährliche Mischung. Dennoch sind Werkzeugmaschinen sicher. Viele Experten haben lange daran gearbeitet, das aktuelle Sicherheitsniveau zu erreichen: Werkzeugmaschinenhersteller, Anwender, Gesundheits- und Sicherheitsfachleute, die EU-Kommission und internationale Normungsgremien. Der Safety Day for Machine Tools auf der EMO Hannover 2017 gibt einen Überblick.

Werbung

Redaktionsbrief

Tragen Sie sich zu unserem Redaktions-Newsletter ein, um auf dem Laufenden zu bleiben.

Aktuelle Ausgabe

Topthema: Kindgerechte Orthesen dank 3D-Druck & Simulation

ANDIAMO GARANTIERT PERFEKTEN SITZ MIT ALTAIR HYPERWORKS

Mehr erfahren

Entdecken Sie weitere Magazine

Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.